Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$N-[(R)-1$-Phenylethyl]thiobenzamide

The title compound, $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NS}$, crystallizes with two crystallographically independent and conformationally almost identical molecules in the asymmetric unit. Both molecules are non-planar, the dihedral angle between the two phenyl planes in each molecule being 76.41 (11) and $86.65(10)^{\circ}$. An anti conformation of the amide and thio groups is observed in the thioamide fragment. In the solid state, the structure is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ intramolecular interactions, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Chiral ligands containing N and S donor atoms have received considerable attention in asymmetric catalysis (e.g. Begum et al., 2006; Brunner et al., 1996). Thioamides especially can act as anionic monodentate or bidentate, chelating or bridging ligands after deprotonation, and they can also provide a potential source of axial chirality owing to their non-planarity (Ach et al., 2002; Artis \& Lipton, 1998; Hossain et al., 2003;). In this paper, we report the synthesis and crystal structure of N -$[(R)$-1-phenylethyl]thiobenzamide (I), with an aim to subsequently investigate the axial chirality of its metal complexes.

(I)

The title compound crystallizes with two crystallographically independent molecules, A and B, in the asymmetric unit (Fig. 1). Both molecules are non-planar, the dihedral angles between the two phenyl planes being $76.41(11)^{\circ}$ (in molecule A) and $86.65(10)^{\circ}$ (in molecule B). These values are comparable to the analogous dihedral angle of $71.7(2)^{\circ}$ in N-benzyl-2-methylfuran-3-thiocarboxanilide (Pavlović et al., 2004). The angles between the two planes defined by the thioamide groups ($\mathrm{S} 1 / \mathrm{C} 7 / \mathrm{N} 1$) and the attached phenyl rings are $29.89(11)^{\circ}$ (in molecule A) and 34.43 (9) ${ }^{\circ}$ (in molecule B). These values are larger than that of 19.1 (2) ${ }^{\circ}$ in N-benzyl-2-methylfuran-3-thiocarboxanilide (Pavlović et al., 2004), but much smaller than that of $83.0(1)^{\circ}$ in $N, 2-$ dimethylthionaphthamide (Ach et al., 2002).

The bond distances and angles in (I) are within normal ranges (Allen et al., 1987). The C7-S1 and N1-C7 bond distances (Table 1) are in agreement with those found in other

Received 13 March 2006
Accepted 14 March 2006

[^0]For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Figure 1
The asymmetric unit of (I), with the atom-labelling scheme; displacement ellipsoids are drawn at the 60% probability level.

Figure 2
The crystal packing of (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines.
thioamide compounds $[\mathrm{C}-\mathrm{S}=1.676$ (3) \AA in N-benzyl-2-methylfuran-3-thiocarboxanilide (Pavlović et al., 2004), 1.667 (3) \AA in $N, 2$-dimethyl-3-thiofuramide (Popović et al., 2001) and 1.688 (3) \AA in $N, 2$-dimethylthionaphthamide (Ach et al., 2002); $\mathrm{C}-\mathrm{N}=1.327$ (4) \AA in N-benzyl-2-methylfuran-3thiocarboxanilide, 1.335 (3) \AA in N,2-dimethyl-3-thiofuramide and 1.334 (3) \AA in N,2-dimethylthionaphthamide]. The short $\mathrm{N} 1-\mathrm{C} 7$ bond distance indicates significant double-bond character, in contrast to the $\mathrm{N} 1-\mathrm{C} 8$ bond distance (Table 1). However, the $\mathrm{N} 1-\mathrm{C} 7$ bond in (I) is still longer than the corresponding $\mathrm{C}=\mathrm{N}$ distance $[1.254$ (9) \AA] found for (I) acting as a deprotonated ligand in the complex bis $\{(1,5-$ cyclooctadiene) [m-N-(R)-1-phenylethyl)thiobenzamidato]rhodium\} (Brunner et al., 1996).

In the crystal packing, molecules are connected into infinite chains along the a axis (Fig. 2) by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular hydrogen bonds between the amide group and the thioamide S atom (Table 2). The crystal structure is further stabilized by weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Experimental

A solution containing O-4-nitrobenzyl benzothioate $(0.260 \mathrm{~g}$, $1.0 \mathrm{mmol})$ and $N-(R)$-methylbenzylamine $(0.122 \mathrm{~g}, 1.0 \mathrm{mmol})$ in dichloromethane (20 ml) was stirred overnight. The product $N-[(R)$ -1-phenylethyl]thiobenzamide was separated by chromatography on silica gel (yield $0.18 \mathrm{~g}, 75 \%$). Yellow needle-like single crystals of (I) of X-ray diffraction quality were obtained by slow evaporation of a dichloromethane $/ n$-hexane (1:3) solution (m.p. 338-339 K).

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NS}$
$M_{r}=241.35$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=10.4149$ (3) А
$b=15.0106$ (5) \AA
$c=16.3110$ (5) \AA
$V=2549.96(14) \AA^{3}$
$Z=8$
$D_{x}=1.257 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6772 reflections
$\theta=1.8-29.0^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=100.0$ (1) K
Needle, yellow
$0.50 \times 0.24 \times 0.24 \mathrm{~mm}$

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.936, T_{\text {max }}=0.946$
50018 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.117$
$S=1.13$
6772 reflections
317 parameters
H atoms treated by a mixture of independent and constrained refinement

6772 independent reflections
6150 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=29.0^{\circ}$
$h=-12 \rightarrow 14$
$k=-20 \rightarrow 20$
$l=-22 \rightarrow 22$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0579 P)^{2}\right. \\
& +0.9357 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.43 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 2982 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.02 \text { (6) }
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{S} 1 A-\mathrm{C} 7 A$	$1.688(2)$	$\mathrm{S} 1 B-\mathrm{C} 7 B$	$1.681(2)$
$\mathrm{N} 1 A-\mathrm{C} 7 A$	$1.321(3)$	$\mathrm{N} 1 B-\mathrm{C} 7 B$	$1.322(3)$
$\mathrm{N} 1 A-\mathrm{C} 8 A$	$1.473(3)$	$\mathrm{N} 1 B-\mathrm{C} 8 B$	$1.476(3)$
$\mathrm{C} 7 A-\mathrm{N} 1 A-\mathrm{C} 8 A$	$126.46(18)$	$\mathrm{C} 7 B-\mathrm{N} 1 B-\mathrm{C} 8 B$	$125.49(17)$
$\mathrm{N} 1 A-\mathrm{C} 7 A-\mathrm{C} 6 A$	$115.71(18)$	$\mathrm{N} 1 B-\mathrm{C} 7 B-\mathrm{C} 6 B$	$116.18(17)$
$\mathrm{N} 1 A-\mathrm{C} 7 A-\mathrm{S} 1 A$	$123.48(16)$	$\mathrm{N} 1 B-\mathrm{C} 7 B-\mathrm{S} 1 B$	$123.30(15)$
$\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{S} 1 A$	$120.81(16)$	$\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{S} 1 B$	$120.51(15)$
$\mathrm{C} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{N} 1 A$	$149.5(2)$	$\mathrm{C} 1 B-\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{N} 1 B$	$-34.8(3)$
$\mathrm{C} 5 A-\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{N} 1 A$	$-30.0(3)$	$\mathrm{C} 5 B-\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{N} 1 B$	$145.5(2)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).
$C g 1, C g 2, C g 3$ and $C g 4$ are the centroids of the phenyl rings $\mathrm{C} 1 A-\mathrm{C} 6 A, \mathrm{C} 1 B-$ $\mathrm{C} 6 B, \mathrm{C} 9 A-\mathrm{C} 14 A$ and $\mathrm{C} 9 B-\mathrm{C} 14 B$, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1 A-\mathrm{H} 1 \mathrm{~N} A \cdots \mathrm{~S} 1 B^{\mathrm{i}}$	0.83 (3)	2.65 (3)	3.4353 (18)	160 (3)
$\mathrm{N} 1 B-\mathrm{H} 1 \mathrm{~N} B \cdots \mathrm{~S} 1 A^{\text {ii }}$	0.83 (3)	2.78 (3)	3.4803 (18)	143 (3)
$\mathrm{C} 1 A-\mathrm{H} 1 A A \cdots \mathrm{~S} 1 A$	0.93	2.76	3.126 (2)	105
$\mathrm{C} 8 A-\mathrm{H} 8 A A \cdots \mathrm{~S} 1 A$	0.98	2.63	3.138 (2)	113
$\mathrm{C} 5 B-\mathrm{H} 5 B A \cdots \mathrm{~S} 1 B$	0.93	2.83	3.152 (2)	102
$\mathrm{C} 8 B-\mathrm{H} 8 B A \cdots \mathrm{~S} 1 B$	0.98	2.71	3.109 (2)	105
$\mathrm{C} 14 B-\mathrm{H} 14 B \cdots \mathrm{Cg} 1^{\text {iii }}$	0.93	2.83	3.547 (2)	135
$\mathrm{C} 13 A-\mathrm{H} 13 \mathrm{~A} \cdots \mathrm{Cg} 2^{\text {iv }}$	0.93	2.97	3.637 (3)	130
$\mathrm{C} 15 B-\mathrm{H} 15 F \ldots \mathrm{Cg} 3{ }^{\text {iii }}$	0.96	3.11	3.845 (2)	134
$\mathrm{C} 8 A-\mathrm{H} 8 A A \cdots \mathrm{Cg} 4^{\text {iv }}$	0.98	2.98	3.852 (2)	148
$\mathrm{C} 2 B-\mathrm{H} 2 B A \cdots C g 4^{\mathrm{v}}$	0.93	3.13	3.764 (2)	127

H atoms attached to N were located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$; the $U_{\text {iso }}(\mathrm{H})$ values were constrained to be $1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors thank the Malaysian Government and the Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118, and the National Science and Engineering Research Council of Canada and Queen's University for support of this work.

References

Ach, D., Reboul, V. \& Metzner, P. (2002). Eur. J. Org. Chem. pp. 2573-2586.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Artis, D. R. \& Lipton, M. A. (1998). J. Am. Chem. Soc. 120, 12200-12206.
Begum, R. A., Powell, D. \& Bowman-James, K. (2006). Inorg. Chem. 45, 964 966.

Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1) . Bruker AXS Inc., Madison, Wisconsin, USA.
Brunner, H., Buegler, J. \& Nuber, B. (1996). Tetrahedron Asymmetry, 7, 30953098.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hossain, M. A., Llinares, J. M., Powell, D. \& Bowman-James, K. (2003). Inorg. Chem. 42, 5043-5045.
Pavlović, G., Tralic-Kulenovic, V. \& Popovic, Z. (2004). Acta Cryst. E60, o637o639.
Popović, J., Mrvos-Sermek, D. \& Tralic-Kulenovic, V. (2001). Acta Cryst. E57, o893-o894.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography

 All rights reserved

